# Math 103 Day 13: The Mean Value Theorem and How Derivatives Shape a Graph

Ryan Blair

University of Pennsylvania

Tuesday October 26, 2010

Ryan Blair (U Penn)

Math 103 Day 13: The Mean Value Theorem Tuesday October 26, 2010 1 / 12

E 6 4 E 6







< 一型

æ

(Rolle's Theorem) Let f be a function that satisfies the following three hypothesis:

- If is continuous on the closed interval [a, b].
- 2 f is differentiable on the open interval (a, b).

```
3 f(a) = f(b).
```

Then there is a number c in (a, b) such that  $f'(c) = 0_i$ 

• • = • • = •

- 3

(Rolle's Theorem) Let f be a function that satisfies the following three hypothesis:

- If is continuous on the closed interval [a, b].
- 2 f is differentiable on the open interval (a, b).

3 f(a) = f(b).

Then there is a number c in (a, b) such that f'(c) = 0;

**Example:**  $f(x) = 1 - x^2$  on [-1, 1].

(日本) (日本) (日本) 日

**Example** Verify that the function  $f(x) = 5 - 12x + 3x^2$  satisfies the hypothesis of Rolle's Theorem on [1,3]. Then find all c in [1,3] such that f'(c) = 0.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

(Mean Value Theorem) Let f be a function that satisfies the following hypothesis:

- If is continuous on the closed interval [a, b].
- 2 f is differentiable on the open interval (a, b).

Then there is a number c in (a, b) such that

$$f'(c) = rac{f(b) - f(a)}{b - a}$$

A B A A B A

(Mean Value Theorem) Let f be a function that satisfies the following hypothesis:

- If is continuous on the closed interval [a, b].
- 2 f is differentiable on the open interval (a, b).

Then there is a number c in (a, b) such that

$$f'(c) = rac{f(b) - f(a)}{b - a}$$

**Example:**  $f(x) = 1 - x^2$  on [-1, 1].

• • = • • = •

3

**Example**Verify that  $f(x) = 3x^2 + 2x + 5$  satisfies the hypothesis of the Mean Value Theorem on [-1, 1]. Then find all numbers *c* satisfying the conclusion of the Mean Value Theorem.

(過) () ティート () 日

#### Exercise

Show that  $f(x) = x^3 - 15 + c$  has at most one real root in [-2, 2].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

How Derivatives Shape a Graph

# How Derivatives Shape a Graph

#### Increasing/Decreasing Test

- If f'(x) > 0 on an interval, then f is increasing on that interval.
- 2 If f'(x) < 0 on an interval, then f is decreasing on that interval.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

#### **First Derivative Test**

Suppose that c is a critical number of a continuous function f.

- If f' changes from positive to negative at c, then f has a local maximum at c.
- If f' changes from negative to positive at c, then f has a local minimum at c.
- If f does not change sign at c, then f has no local maximum or minimum at c.

・ 同 ト ・ 日 ト ・ 日 ト ・ 日

## Definition

If a graph of f lies above all of its tangents on an interval I, then is is called **concave up** on I. If a graph of f lies below all of its tangents on an interval I, then is is called **concave down** on I.

#### Concavity test

- If f''(x) > 0 for all x in I, then the graph of f is concave up on I.
- 2 If f''(x) < 0 for all x in I, then the graph of f is concave down on I.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

### Definition

A point P on a curve y = f(x) is called and **inflection point** if f is continuous there and the curve changes from concave down to concave up or from concave up to concave down at P.

(3)

#### The Second Derivative Test

Suppose f'' is continuous near c.

If 
$$f'(c) = 0$$
 and  $f''(c) > 0$ , then f has a local minimum at c.

**2** If 
$$f'(c) = 0$$
 and  $f''(c) < 0$ , then  $f$  has a local maximum at  $c$ .

- 2