Math 103 Day 13: The Mean Value Theorem and How Derivatives Shape a Graph

Ryan Blair

University of Pennsylvania
Tuesday October 26, 2010

Outline

(1) The Mean Value Theorem

(2) How Derivatives Shape a Graph

Theorem

(Rolle's Theorem) Let f be a function that satisfies the following three hypothesis:
(1) f is continuous on the closed interval $[a, b]$.
(2) f is differentiable on the open interval (a, b).
(3) $f(a)=f(b)$.

Then there is a number c in (a, b) such that $f^{\prime}(c)=0_{i}$

Theorem

(Rolle's Theorem) Let f be a function that satisfies the following three hypothesis:
(1) f is continuous on the closed interval $[a, b]$.
(2) f is differentiable on the open interval (a, b).
(3) $f(a)=f(b)$.

Then there is a number c in (a, b) such that $f^{\prime}(c)=0_{i}$
Example: $f(x)=1-x^{2}$ on $[-1,1]$.

Example Verify that the function $f(x)=5-12 x+3 x^{2}$ satisfies the hypothesis of Rolle's Theorem on $[1,3]$. Then find all c in $[1,3]$ such that $f^{\prime}(c)=0$.

Theorem
(Mean Value Theorem) Let f be a function that satisfies the following hypothesis:
(3) f is continuous on the closed interval $[a, b]$.
(2) f is differentiable on the open interval (a, b).

Then there is a number c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Theorem
(Mean Value Theorem) Let f be a function that satisfies the following hypothesis:
(1) f is continuous on the closed interval $[a, b]$.
(2) f is differentiable on the open interval (a, b).

Then there is a number c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Example: $f(x)=1-x^{2}$ on $[-1,1]$.

ExampleVerify that $f(x)=3 x^{2}+2 x+5$ satisfies the hypothesis of the Mean Value Theorem on $[-1,1]$. Then find all numbers c satisfying the conclusion of the Mean Value Theorem.

Exercise
 Show that $f(x)=x^{3}-15+c$ has at most one real root in $[-2,2]$.

How Derivatives Shape a Graph

Increasing/Decreasing Test

(1) If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval.
(2) If $f^{\prime}(x)<0$ on an interval, then f is decreasing on that interval.

First Derivative Test

Suppose that c is a critical number of a continuous function f.
(1) If f^{\prime} changes from positive to negative at c, then f has a local maximum at c.
(2) If f^{\prime} changes from negative to positive at c, then f has a local minimum at c.
(3) If f does not change sign at c, then f has no local maximum or minimum at c.

Definition

If a graph of f lies above all of its tangents on an interval I, then is is called concave up on I. If a graph of f lies below all of its tangents on an interval I, then is is called concave down on I.

Concavity test

(1) If $f^{\prime \prime}(x)>0$ for all x in I, then the graph of f is concave up on I.
(2) If $f^{\prime \prime}(x)<0$ for all x in I, then the graph of f is concave down on I.

Definition

A point P on a curve $y=f(x)$ is called and inflection point if f is continuous there and the curve changes from concave down to concave up or from concave up to concave down at P.

The Second Derivative Test

Suppose $f^{\prime \prime}$ is continuous near c.
(1) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local minimum at c.
(2) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local maximum at c.

